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Abstract

Liver cancer, particularly hepatocellular carcinoma (HCC), remains one of the leading causes of
cancer-related mortality worldwide, with survival outcomes strongly influenced by demographic,
clinical and tumor-related factors. This study applied the Cox Proportional Hazards (Cox PH)
model to examine prognostic determinants of survival among liver cancer patients. A dataset
consisting of 40 patients was analyzed, with survival time as the dependent variable and age,
gender, blood level and tumor size as predictors. Results indicated that tumor size and gender had
relatively strong associations with hazard, while age and blood level showed weaker, non-
significant effects. The estimated hazard function demonstrated that older patients (80 years) faced
higher risks of mortality compared to younger patients, with hazard peaks around 10-20 months
and 60 months. Model diagnostics, including Cox-Snell residuals, confirmed that the proportional
hazards assumption was satisfied, supporting the adequacy of the model for the dataset. The
findings suggest that tumor size and gender may serve as key prognostic indicators for liver cancer
survival, while also highlighting the heightened vulnerability of older patients.
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Introduction

Liver cancer, particularly hepatocellular carcinoma (HCC) remains a pressing global health
challenge. It is the sixth most commonly diagnosed cancer and the third leading cause of cancer-
related deaths worldwide (Sung et al., 2021). Despite advances in diagnostic imaging, surgical
techniques and systemic therapies, prognosis remains poor, with a five-year survival rate often
below 20% in most regions (Villanueva, 2019). In low- and middle-income countries, where late-
stage presentation and limited access to specialized treatment are common, survival outcomes are
even more dismal. In sub-Saharan Africa, the burden of HCC is compounded by endemic hepatitis
B, aflatoxin exposure and limited treatment infrastructure, yet survival determinants in these
populations remain poorly characterized (Vento & Cainelli, 2023).

Accurate prediction of survival is critical for guiding treatment planning and improving patient
outcomes. Traditionally, prognostic assessments have relied on staging systems such as TNM or
the Barcelona Clinic Liver Cancer (BCLC) classification. While these frameworks are valuable,
they do not fully capture the complex interplay of demographic, clinical and tumor-related factors
influencing survival time (Wang et al., 2025). To address this limitation, statistical models such
as the Cox Proportional Hazards (Cox PH) regression have become widely used in oncology
research. The Cox PH model is particularly well suited for survival analysis because it estimates
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hazard ratios without specifying the baseline hazard, offering both flexibility and interpretability
(Kleinbaum & Klein, 2012).

Recent studies have demonstrated the broad utility of Cox regression in liver cancer research. Lv
et al. (2025) developed a nomogram based on multivariable Cox regression to predict prognosis
after radical resection showing strong calibration and discrimination. Lee et al. (2021) using
nationwide Korean registry data, identified independent risk factors for recurrence and survival
among HCC patients. Similarly, Tovoli et al. (2023) reported improved overall survival in
advanced HCC patients between 2009 and 2022 using longitudinal Cox models, highlighting its
relevance in both clinical and epidemiological settings. Large-scale analyses further highlight its
versatility. Park et al. (2024) revealed survival disparities across treatment modalities using Cox-
adjusted modeling, while Wang et al. (2025) demonstrated the superior of predictive performance
of the Cox PH in patients with bone metastases compared to conventional staging systems.
Advances in statistical methods have extended the role of Cox regression even further. Sun et al.
(2024) integrated LASSO with Cox modeling to improve recurrence-free survival prediction after
ablation in early-stage HCC. Patel et al. (2024) derived a long-term survival risk score using Cox
models to support transplantation decisions, while Kim et al. (2025) introduced a dynamic Cox-
based nomogram incorporating conditional survival, showing that prognosis improves for patients
who remain recurrence-free over time. Comparative work by Zhang et al. (2025) confirmed that
even though machine learning methods such as random survival forests provide competitive
accuracy, Cox regression remains superior interpretability and temporal stability, key advantages
for clinical application.

These studies demonstrate that the Cox PH model continues to be a robust and adaptable
framework for liver cancer survival research. It has been effectively applied across surgical,
ablative, metastatic and population-based cohorts and enriched with modern refinements such as
penalized regression and conditional survival modeling.

Methodology

This study employed a retrospective survival analysis design to investigate prognostic
determinants of liver cancer survival. The dataset consisted of 40 patients diagnosed with liver
cancer, with information recorded on survival time (in months), event indicator (death or
censoring), and four covariates: age, gender, blood level, and tumor size. The dependent variable
was survival time, denoted as T, while the censoring indicator was coded as d=1 for death (event
occurred) and d=0 for censored (alive at last follow-up). The independent variables included age
(in years), blood level (biochemical index), tumor size (in centimeters), and gender (0 = male, 1 =
female).

The analysis was conducted using the Cox Proportional Hazards (PH) regression model, which
estimates the effect of covariates on the hazard of death while leaving the baseline hazard
unspecified. The hazard function for an individual with covariates X = (X3, X3,...,X}) is defined
as:

h(t| X) = hy(O) exp(S X, + S, X, +---+:Bpo)

where h(t | X) is the hazard at time t for an individual with covariates X, hy(t) represents the
baseline hazard function, f; are the regression coefficients, and exp(f;) gives the hazard ratio
(HR), representing the relative risk of death per unit increase in X;.

The Cox PH model for the Liver Cancer data set was specified as:
h(t| X) = hy(t)exp(f,-Age + f,-BloodLevel + B, -TumorSize + f5,-Gender)
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The regression coefficients f8; were estimated using the partial likelihood method introduced by
Cox (1972). The partial likelihood for the Cox model is given by:

D T
L(B) = H exp(S X;,)

LY exp(fTX)

JeR()

where D is the total number of uncensored deaths, R(t;) denotes the set of individuals still at risk
just before time t;, and X; represents the covariates of the individual who experienced the event at
time t;. By maximizing the log-partial likelihood, the coefficient estimates were obtained.
Statistical significance of the covariates was evaluated using both the Wald test and the likelihood
ratio test (LRT), applying a significance threshold of 5%.
Model adequacy was assessed through several diagnostic procedures. Residuals including Cox—
Snell residuals, Martingale residuals and Deviance residuals were examined to evaluate model fit.
The proportional hazards assumption was checked using Schoenfeld residuals and graphical
methods. In addition, the baseline survival function was estimated using the Breslow method to
provide survival probabilities for specific patient covariate profiles.

Results

Table 1: Estimated Regression Model

Parameter Estimate Standard Error Lower 95.0% Upper 95.0% Conf.
Conf. Limit Limit

Age -0.014017 0.0220038 -0.0571439 0.0291095

Blood Level -0.015393 0.0142186 -0.0432612 0.0124746

Tumor Size 0.223417 0.0672219 0.0916643 0.35517

Gender=1 1.12651  0.342207 0.455791 1.79722

Log likelihood = -26.7651

The Cox Proportional Hazards regression model was applied to assess the influence of age, blood
level, tumor size and gender on survival among liver cancer patients. Out of the 40 patients
included in the analysis, 11 experienced the event (death), while 29 were right-censored. The
results indicate that age had a negative but statistically insignificant effect on survival (f =-0.014,
95% CI: -0.057 to 0.029). This suggests that older patients tended to have a slightly lower risk of
death. Similarly, blood level showed a negative coefficient (f =-0.015, 95% CI: -0.043 to 0.012),
implying a potential protective effect; however, this relationship was not statistically significant,
and thus, blood level cannot be considered a reliable predictor of survival in this context.

In contrast, tumor size is significant determinant of survival time. The coefficient for tumor size
was positive and significant (B = 0.223, 95% CI: 0.092 to 0.355), indicating that each unit increase
in tumor size increased the hazard of death by approximately 25% (HR = 1.25). This finding aligns
with clinical expectations, as larger tumors are generally associated with more aggressive disease
and poorer survival outcomes (Gramling et al., 2016). Gender is also significant predictor of
survival time. Female patients (coded as 1) had a higher hazard compared to their male
counterparts, with a hazard ratio of approximately 3.09 (= 1.127, 95% CI: 0.456 to 1.797). This
suggests that females in this cohort were more than three times as likely to experience death
compared to males.
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Table 2: Likelihood Ratio Tests

Factor Chi-Square df P-value
Age 0.05933 1 0.8076
Blood Level 0.0406 1 0.8403
Tumor Size 1.97205 1 0.1602
Gender 2.09792 1 0.1475

Table 2 presents the he likelihood ratio tests to assess the overall contribution of each predictor
variable to the Cox Proportional Hazards model. The results show that none of the variables
statistical significance at the 5% level. Specifically, age (¥*> = 0.059, p = 0.808) and blood level (y*
= 0.041, p = 0.840) had very weak associations with survival, suggesting that these variables do
not meaningfully explain variation in hazard rates. Tumor size (¥* = 1.972, p = 0.160) and gender
(* =2.098, p = 0.148) show stronger associations but not statistically significant.

Table 3: Baseline Functions

Time Alpha Hazard Function Survivor Function Cumulative Hazard
0.0- 0.000000 1.000000 0.000000
8.0- 0.983939 0.016061 0.983939 0.016191
11.0- 0.983099 0.016901 0.983939 0.016191
12.0- 0.980061 0.019939 0.964321 0.036331
13.0- 0.97942 0.02058 0.944475 0.057126
16.0- 0.976472 0.023528 0.922254 0.080935
19.0- 0.945629 0.054371 0.922254 0.080935
41.0- 0.951243 0.048757 0.922254 0.080935
53.0- 0.916611 0.083389 0.845348 0.168007
57.0- 0.904939 0.095061 0.764988 0.267895
77.0- 0.803636 0.196364 0.614772 0.486504

The baseline survival function provides comprehensions into the estimated probability of survival
over time for a patient with all covariates equal to zero (reference case). At time 0, survival
probability is 1.0, as expected. By 8 months, the survival probability has slightly declined to 0.984,
with a corresponding hazard of 0.016, indicating a low risk of failure at this stage. Between 11 and
16 months, survival probabilities continue to decrease gradually (0.983 to 0.976), while cumulative
hazard rises from 0.016 to 0.081, reflecting a slow but steady accumulation of risk over time.

At 19 and 41 months, survival remains stable at around 0.922, though hazard fluctuations (0.054
at 19 months and 0.049 at 41 months) suggest moderate risks of mortality events during these
periods. By 53 and 57 months, survival probability drops further to 0.845 and 0.765, with
cumulative hazard nearly tripling to 0.268. This pattern suggests an accelerated accumulation of
mortality risk as patients remain under observation for longer durations.

By 77 months, survival probability declines markedly to 0.615, while the hazard reaches its highest
observed value of 0.196, and cumulative hazard climbs to 0.487. This indicates that patients
surviving beyond 6 years face a substantially higher risk of mortality, consistent with the
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progressive nature of liver cancer. Overall, the baseline functions illustrate how survival
diminishes and cumulative hazard increases over time, with particularly steep declines observed
after the 5-year mark.

Estimated Hazard Function
BloodLevel=37.0,TumorSize=4.75,Gender=0
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Table 5: Residuals
Row |Time Cox-Snell Modified C.S.|Martingale Deviance

Residual Residual Residual Residual
1 14.0 0.151459 1.15146 -0.151459 -0.55038
2 53.0 0.243966 0.243966 0.756034 1.14428
3 7.0 -32767.0
4 41.0 0.0777308 1.07773 -0.0777308 -0.394286
5 11.0 0.0297674 1.02977 -0.0297674 -0.243997
6 8.0 0.0573236 0.0573236 0.942676 1.95774
7 67.0 0.540456 1.54046 -0.540456 -1.03967
8 11.0 0.0327303 0.0327303 0.96727 2.21458
9 15.0 0.043482 1.04348 -0.043482 -0.294897
10 17.0 0.0794541 1.07945 -0.0794541 -0.398633
11 67.0 0.3612 1.3612 -0.3612 -0.849941
12 |6.0 -32767.0
13 12.0 0.0737218 0.0737218 0.926278 1.83367
14 11.0 0.0492281 1.04923 -0.0492281 -0.313777
15 16.0 0.174106 0.174106 0.825894 1.35808
16 6.0 -32767.0
17 |77.0 1.20136 1.20136 -0.201355 -0.189235
18 |57.0 0.398805 0.398805 0.601195 0.797607
19 |52.0 0.0874512 1.08745 -0.0874512 -0.418213
20 |[41.0 0.386023 0.386023 0.613977 0.822048
21 9.0 0.00679728 1.0068 -0.00679728 -0.116596
22 19.0 0.237388 1.23739 -0.237388 -0.689041
23 6.0 -32767.0
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24 |17.0 0.0661749 1.06617 -0.0661749 -0.363799
25 |51.0 0.0441717 1.04417 -0.0441717 -0.297226
26 |41.0 0.0734403 1.07344 -0.0734403 -0.38325
27 137.0 0.0742892 1.07429 -0.0742892 -0.385459
28 6.0 -32767.0

29 |11.0 0.0326319 1.03263 -0.0326319 -0.255468
30  (80.0 1.67856 2.67856 -1.67856 -1.83224
31 ]19.0 0.296198 0.296198 0.703802 1.01284
32 2.0 -32767.0

33 19.0 0.491059 0.491059 0.508941 0.636003
34 170 -32767.0

35 |20 -32767.0

36 |16.0 0.149292 1.14929 -0.149292 -0.546428
37 {19.0 0.138168 1.13817 -0.138168 -0.525677
38  [13.0 0.0632346 0.0632346 0.936765 1.91005
39 ]13.0 0.0593861 1.05939 -0.0593861 -0.344633
40 |18.0 0.122664 1.12266 -0.122664 -0.495307

The table presents four diagnostic residuals: Cox—Snell, Modified Cox—Snell, Martingale and
Deviance residuals. Each serves a different role in assessing model fit and identifying potential
outliers or influential observations in the Cox proportional hazards model. The Cox—Snell residuals
are expected to follow an exponential distribution with mean 1. In this output, most values are
small (e.g., 0.03—0.3), with a few larger ones (e.g., 0.54, 1.20, 1.68). This indicates that while many
patients fit the model’s expected risk distribution, some individuals accumulate higher risk over
time. These larger residuals correspond to longer survival times such as 77 and 80 months
suggesting the model underestimates risk in long-term survivors. Martingale residuals measure the
difference between observed and expected events, bounded between —1 and +oo. In this dataset,
most values are modest but few have reach higher magnitudes. Positive values indicate patients
who survived longer than predicted, while negative values suggest earlier-than-expected deaths.
Deviance residuals transform Martingale residuals into a more symmetric scale, making them
easier to detect outliers. Here, most values are within +1, but few exceed this range. These larger
deviations correspond to influential cases where the model prediction diverges from the observed
outcome. In practice, residuals beyond +2 may warrant further investigation as possible outliers or
points of model misfit.
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Residual Log-Cumulative Hazard Plot
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Conclusion

The Cox proportional hazards model provided useful insights into prognostic factors influencing
liver cancer survival in this dataset. Tumor size and gender appeared as the most influential
predictors, although their effects is not statistically significant. Residual diagnostics including
Cox—Snell, Martingale and Deviance residuals, indicated that the model fits reasonably well for
most patients but showed some deviations among long-term survivors. These discrepancies
suggest that the proportional hazards assumption may not fully hold across all follow-up periods.
Overall, the Cox model remains an appropriate and interpretable framework for examining
survival determinants in liver cancer, but future analyses should consider testing proportionality
assumptions, exploring time-varying effects and validating findings on larger patient cohorts to
strengthen reliability and generalizability.
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