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Abstract 

Liver cancer, particularly hepatocellular carcinoma (HCC), remains one of the leading causes of 

cancer-related mortality worldwide, with survival outcomes strongly influenced by demographic, 

clinical and tumor-related factors. This study applied the Cox Proportional Hazards (Cox PH) 

model to examine prognostic determinants of survival among liver cancer patients. A dataset 

consisting of 40 patients was analyzed, with survival time as the dependent variable and age, 

gender, blood level and tumor size as predictors. Results indicated that tumor size and gender had 

relatively strong associations with hazard, while age and blood level showed weaker, non-

significant effects. The estimated hazard function demonstrated that older patients (80 years) faced 

higher risks of mortality compared to younger patients, with hazard peaks around 10–20 months 

and 60 months. Model diagnostics, including Cox-Snell residuals, confirmed that the proportional 

hazards assumption was satisfied, supporting the adequacy of the model for the dataset. The 

findings suggest that tumor size and gender may serve as key prognostic indicators for liver cancer 

survival, while also highlighting the heightened vulnerability of older patients.  
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Introduction 

Liver cancer, particularly hepatocellular carcinoma (HCC) remains a pressing global health 

challenge. It is the sixth most commonly diagnosed cancer and the third leading cause of cancer-

related deaths worldwide (Sung et al., 2021). Despite advances in diagnostic imaging, surgical 

techniques and systemic therapies, prognosis remains poor, with a five-year survival rate often 

below 20% in most regions (Villanueva, 2019). In low- and middle-income countries, where late-

stage presentation and limited access to specialized treatment are common, survival outcomes are 

even more dismal. In sub-Saharan Africa, the burden of HCC is compounded by endemic hepatitis 

B, aflatoxin exposure and limited treatment infrastructure, yet survival determinants in these 

populations remain poorly characterized (Vento & Cainelli, 2023). 

Accurate prediction of survival is critical for guiding treatment planning and improving patient 

outcomes. Traditionally, prognostic assessments have relied on staging systems such as TNM or 

the Barcelona Clinic Liver Cancer (BCLC) classification. While these frameworks are valuable, 

they do not fully capture the complex interplay of demographic, clinical and tumor-related factors 

influencing survival time (Wang et al., 2025). To address this limitation, statistical models such 

as the Cox Proportional Hazards (Cox PH) regression have become widely used in oncology 

research. The Cox PH model is particularly well suited for survival analysis because it estimates 
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hazard ratios without specifying the baseline hazard, offering both flexibility and interpretability 

(Kleinbaum & Klein, 2012). 

Recent studies have demonstrated the broad utility of Cox regression in liver cancer research. Lv 

et al. (2025) developed a nomogram based on multivariable Cox regression to predict prognosis 

after radical resection showing strong calibration and discrimination. Lee et al. (2021) using 

nationwide Korean registry data, identified independent risk factors for recurrence and survival 

among HCC patients. Similarly, Tovoli et al. (2023) reported improved overall survival in 

advanced HCC patients between 2009 and 2022 using longitudinal Cox models, highlighting its 

relevance in both clinical and epidemiological settings. Large-scale analyses further highlight its 

versatility. Park et al. (2024) revealed survival disparities across treatment modalities using Cox-

adjusted modeling, while Wang et al. (2025) demonstrated the superior of predictive performance 

of the Cox PH in patients with bone metastases compared to conventional staging systems. 

Advances in statistical methods have extended the role of Cox regression even further. Sun et al. 

(2024) integrated LASSO with Cox modeling to improve recurrence-free survival prediction after 

ablation in early-stage HCC. Patel et al. (2024) derived a long-term survival risk score using Cox 

models to support transplantation decisions, while Kim et al. (2025) introduced a dynamic Cox-

based nomogram incorporating conditional survival, showing that prognosis improves for patients 

who remain recurrence-free over time. Comparative work by Zhang et al. (2025) confirmed that 

even though machine learning methods such as random survival forests provide competitive 

accuracy, Cox regression remains superior interpretability and temporal stability, key advantages 

for clinical application.  

These studies demonstrate that the Cox PH model continues to be a robust and adaptable 

framework for liver cancer survival research. It has been effectively applied across surgical, 

ablative, metastatic and population-based cohorts and enriched with modern refinements such as 

penalized regression and conditional survival modeling.  

 

Methodology 

This study employed a retrospective survival analysis design to investigate prognostic 

determinants of liver cancer survival. The dataset consisted of 40 patients diagnosed with liver 

cancer, with information recorded on survival time (in months), event indicator (death or 

censoring), and four covariates: age, gender, blood level, and tumor size. The dependent variable 

was survival time, denoted as T, while the censoring indicator was coded as d=1 for death (event 

occurred) and d=0 for censored (alive at last follow-up). The independent variables included age 

(in years), blood level (biochemical index), tumor size (in centimeters), and gender (0 = male, 1 = 

female). 

The analysis was conducted using the Cox Proportional Hazards (PH) regression model, which 

estimates the effect of covariates on the hazard of death while leaving the baseline hazard 

unspecified. The hazard function for an individual with covariates 𝑋 =  (𝑋1, 𝑋2, . . . , 𝑋𝑝) is defined 

as: 

0 1 1 2 2( | ) ( )exp( ... )p ph t X h t X X X  = + + +  

where ℎ(𝑡 ∣ 𝑋) is the hazard at time t for an individual with covariates 𝑋, ℎ0(𝑡) represents the 

baseline hazard function, 𝛽𝑗 are the regression coefficients, and exp(𝛽𝑗) gives the hazard ratio 

(HR), representing the relative risk of death per unit increase in 𝑋𝑗. 

The Cox PH model for the Liver Cancer data set was specified as: 

0 1 2 3 4( | ) ( )exp( ·Age ·BloodLevel ·TumorSize ·Gender)h t X h t    = + + +  
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The regression coefficients 𝛽𝑗 were estimated using the partial likelihood method introduced by 

Cox (1972). The partial likelihood for the Cox model is given by: 
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where D is the total number of uncensored deaths, 𝑅(𝑡𝑖) denotes the set of individuals still at risk 

just before time 𝑡𝑖, and 𝑋𝑖 represents the covariates of the individual who experienced the event at 

time 𝑡𝑖. By maximizing the log-partial likelihood, the coefficient estimates were obtained. 

Statistical significance of the covariates was evaluated using both the Wald test and the likelihood 

ratio test (LRT), applying a significance threshold of 5%. 

Model adequacy was assessed through several diagnostic procedures. Residuals including Cox–

Snell residuals, Martingale residuals and Deviance residuals were examined to evaluate model fit. 

The proportional hazards assumption was checked using Schoenfeld residuals and graphical 

methods. In addition, the baseline survival function was estimated using the Breslow method to 

provide survival probabilities for specific patient covariate profiles. 

 

Results 

Table 1: Estimated Regression Model 

Parameter Estimate Standard Error Lower 95.0% 

Conf. Limit 

Upper 95.0% Conf. 

Limit 

Age -0.014017 0.0220038 -0.0571439 0.0291095 

Blood Level -0.015393 0.0142186 -0.0432612 0.0124746 

Tumor Size 0.223417 0.0672219 0.0916643 0.35517 

Gender=1 1.12651 0.342207 0.455791 1.79722 

Log likelihood = -26.7651 

 

The Cox Proportional Hazards regression model was applied to assess the influence of age, blood 

level, tumor size and gender on survival among liver cancer patients. Out of the 40 patients 

included in the analysis, 11 experienced the event (death), while 29 were right-censored. The 

results indicate that age had a negative but statistically insignificant effect on survival (β = -0.014, 

95% CI: -0.057 to 0.029). This suggests that older patients tended to have a slightly lower risk of 

death. Similarly, blood level showed a negative coefficient (β = -0.015, 95% CI: -0.043 to 0.012), 

implying a potential protective effect; however, this relationship was not statistically significant, 

and thus, blood level cannot be considered a reliable predictor of survival in this context. 

In contrast, tumor size is significant determinant of survival time. The coefficient for tumor size 

was positive and significant (β = 0.223, 95% CI: 0.092 to 0.355), indicating that each unit increase 

in tumor size increased the hazard of death by approximately 25% (HR ≈ 1.25). This finding aligns 

with clinical expectations, as larger tumors are generally associated with more aggressive disease 

and poorer survival outcomes (Gramling et al., 2016). Gender is also significant predictor of 

survival time. Female patients (coded as 1) had a higher hazard compared to their male 

counterparts, with a hazard ratio of approximately 3.09 (β = 1.127, 95% CI: 0.456 to 1.797). This 

suggests that females in this cohort were more than three times as likely to experience death 

compared to males. 
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Table 2: Likelihood Ratio Tests 

Factor Chi-Square df P-value 

Age 0.05933 1 0.8076 

Blood Level 0.0406 1 0.8403 

Tumor Size 1.97205 1 0.1602 

Gender 2.09792 1 0.1475 

 

Table 2 presents the he likelihood ratio tests to assess the overall contribution of each predictor 

variable to the Cox Proportional Hazards model. The results show that none of the variables 

statistical significance at the 5% level. Specifically, age (χ² = 0.059, p = 0.808) and blood level (χ² 

= 0.041, p = 0.840) had very weak associations with survival, suggesting that these variables do 

not meaningfully explain variation in hazard rates. Tumor size (χ² = 1.972, p = 0.160) and gender 

(χ² = 2.098, p = 0.148) show stronger associations but not statistically significant.  

 

Table 3: Baseline Functions 

Time Alpha Hazard Function Survivor Function Cumulative Hazard 

0.0-  0.000000 1.000000 0.000000 

8.0- 0.983939 0.016061 0.983939 0.016191 

11.0- 0.983099 0.016901 0.983939 0.016191 

12.0- 0.980061 0.019939 0.964321 0.036331 

13.0- 0.97942 0.02058 0.944475 0.057126 

16.0- 0.976472 0.023528 0.922254 0.080935 

19.0- 0.945629 0.054371 0.922254 0.080935 

41.0- 0.951243 0.048757 0.922254 0.080935 

53.0- 0.916611 0.083389 0.845348 0.168007 

57.0- 0.904939 0.095061 0.764988 0.267895 

77.0- 0.803636 0.196364 0.614772 0.486504 

 

The baseline survival function provides comprehensions into the estimated probability of survival 

over time for a patient with all covariates equal to zero (reference case). At time 0, survival 

probability is 1.0, as expected. By 8 months, the survival probability has slightly declined to 0.984, 

with a corresponding hazard of 0.016, indicating a low risk of failure at this stage. Between 11 and 

16 months, survival probabilities continue to decrease gradually (0.983 to 0.976), while cumulative 

hazard rises from 0.016 to 0.081, reflecting a slow but steady accumulation of risk over time. 

At 19 and 41 months, survival remains stable at around 0.922, though hazard fluctuations (0.054 

at 19 months and 0.049 at 41 months) suggest moderate risks of mortality events during these 

periods. By 53 and 57 months, survival probability drops further to 0.845 and 0.765, with 

cumulative hazard nearly tripling to 0.268. This pattern suggests an accelerated accumulation of 

mortality risk as patients remain under observation for longer durations. 

By 77 months, survival probability declines markedly to 0.615, while the hazard reaches its highest 

observed value of 0.196, and cumulative hazard climbs to 0.487. This indicates that patients 

surviving beyond 6 years face a substantially higher risk of mortality, consistent with the 
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progressive nature of liver cancer. Overall, the baseline functions illustrate how survival 

diminishes and cumulative hazard increases over time, with particularly steep declines observed 

after the 5-year mark. 

 

 
 

Table 5: Residuals 

Row Time Cox-Snell 

Residual 

Modified C.S. 

Residual 

Martingale 

Residual 

Deviance 

Residual 

1 14.0 0.151459 1.15146 -0.151459 -0.55038 

2 53.0 0.243966 0.243966 0.756034 1.14428 

3 7.0  -32767.0   

4 41.0 0.0777308 1.07773 -0.0777308 -0.394286 

5 11.0 0.0297674 1.02977 -0.0297674 -0.243997 

6 8.0 0.0573236 0.0573236 0.942676 1.95774 

7 67.0 0.540456 1.54046 -0.540456 -1.03967 

8 11.0 0.0327303 0.0327303 0.96727 2.21458 

9 15.0 0.043482 1.04348 -0.043482 -0.294897 

10 17.0 0.0794541 1.07945 -0.0794541 -0.398633 

11 67.0 0.3612 1.3612 -0.3612 -0.849941 

12 6.0  -32767.0   

13 12.0 0.0737218 0.0737218 0.926278 1.83367 

14 11.0 0.0492281 1.04923 -0.0492281 -0.313777 

15 16.0 0.174106 0.174106 0.825894 1.35808 

16 6.0  -32767.0   

17 77.0 1.20136 1.20136 -0.201355 -0.189235 

18 57.0 0.398805 0.398805 0.601195 0.797607 

19 52.0 0.0874512 1.08745 -0.0874512 -0.418213 

20 41.0 0.386023 0.386023 0.613977 0.822048 

21 9.0 0.00679728 1.0068 -0.00679728 -0.116596 

22 19.0 0.237388 1.23739 -0.237388 -0.689041 

23 6.0  -32767.0   
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24 17.0 0.0661749 1.06617 -0.0661749 -0.363799 

25 51.0 0.0441717 1.04417 -0.0441717 -0.297226 

26 41.0 0.0734403 1.07344 -0.0734403 -0.38325 

27 37.0 0.0742892 1.07429 -0.0742892 -0.385459 

28 6.0  -32767.0   

29 11.0 0.0326319 1.03263 -0.0326319 -0.255468 

30 80.0 1.67856 2.67856 -1.67856 -1.83224 

31 19.0 0.296198 0.296198 0.703802 1.01284 

32 2.0  -32767.0   

33 19.0 0.491059 0.491059 0.508941 0.636003 

34 7.0  -32767.0   

35 2.0  -32767.0   

36 16.0 0.149292 1.14929 -0.149292 -0.546428 

37 19.0 0.138168 1.13817 -0.138168 -0.525677 

38 13.0 0.0632346 0.0632346 0.936765 1.91005 

39 13.0 0.0593861 1.05939 -0.0593861 -0.344633 

40 18.0 0.122664 1.12266 -0.122664 -0.495307 

 

The table presents four diagnostic residuals: Cox–Snell, Modified Cox–Snell, Martingale and 

Deviance residuals. Each serves a different role in assessing model fit and identifying potential 

outliers or influential observations in the Cox proportional hazards model. The Cox–Snell residuals 

are expected to follow an exponential distribution with mean 1. In this output, most values are 

small (e.g., 0.03–0.3), with a few larger ones (e.g., 0.54, 1.20, 1.68). This indicates that while many 

patients fit the model’s expected risk distribution, some individuals accumulate higher risk over 

time. These larger residuals correspond to longer survival times such as 77 and 80 months 

suggesting the model underestimates risk in long-term survivors. Martingale residuals measure the 

difference between observed and expected events, bounded between –1 and +∞. In this dataset, 

most values are modest but few have reach higher magnitudes. Positive values indicate patients 

who survived longer than predicted, while negative values suggest earlier-than-expected deaths. 

Deviance residuals transform Martingale residuals into a more symmetric scale, making them 

easier to detect outliers. Here, most values are within ±1, but few exceed this range. These larger 

deviations correspond to influential cases where the model prediction diverges from the observed 

outcome. In practice, residuals beyond ±2 may warrant further investigation as possible outliers or 

points of model misfit. 
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Conclusion 

The Cox proportional hazards model provided useful insights into prognostic factors influencing 

liver cancer survival in this dataset. Tumor size and gender appeared as the most influential 

predictors, although their effects is not statistically significant. Residual diagnostics including 

Cox–Snell, Martingale and Deviance residuals, indicated that the model fits reasonably well for 

most patients but showed some deviations among long-term survivors. These discrepancies 

suggest that the proportional hazards assumption may not fully hold across all follow-up periods. 

Overall, the Cox model remains an appropriate and interpretable framework for examining 

survival determinants in liver cancer, but future analyses should consider testing proportionality 

assumptions, exploring time-varying effects and validating findings on larger patient cohorts to 

strengthen reliability and generalizability. 
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